1,934,565 research outputs found

    TransPlanckian Particles and the Quantization of Time

    Get PDF
    Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian particles. A way to learn more about the mechanisms at work here, is to study black hole horizons, starting from the scattering matrix Ansatz. By compactifying one of the three physical spacial dimensions, the scattering matrix Ansatz can be exploited more efficiently than before. The algebra of operators on a black hole horizon allows for a few distinct representations. It is found that this horizon can be seen as being built up from string bits with unit lengths, each of which being described by a representation of the SO(2,1) Lorentz group. We then demonstrate how the holographic principle works for this case, by constructing the operators corresponding to a field in space-time. The parameter t turns out to be quantized in Planckian units, divided by the period R of the compactified dimension.Comment: 12 pages plain tex, 1 figur

    Winding Solutions for the two Particle System in 2+1 Gravity

    Get PDF
    Using a PASCAL program to follow the evolution of two gravitating particles in 2+1 dimensions we find solutions in which the particles wind around one another indefinitely. As their center of mass moves `tachyonic' they form a Gott-pair. To avoid unphysical boundary conditions we consider a large but closed universe. After the particles have evolved for some time their momenta have grown very large. In this limit we quantize the model and find that both the relevant configuration variable and its conjugate momentum become discrete.Comment: 15 pages Latex, 4 eps figure

    Vortices and confinement at weak coupling

    Full text link
    We discuss the physical picture of thick vortices as the mechanism responsible for confinement at arbitrarily weak coupling in SU(2) gauge theory. By introducing appropriate variables on the lattice we distinguish between thin, thick and `hybrid' vortices, the latter involving Z(2) monopole loop boundaries. We present numerical lattice simulation results that demonstrate that the full SU(2) string tension at weak coupling arises from the presence of vortices linked to the Wilson loop. Conversely, excluding linked vortices eliminates the confining potential. The numerical results are stable under alternate choice of lattice action as well as a smoothing procedure which removes short distance fluctuations while preserving long distance physics.Comment: 21 pages, LaTe

    Pauli-Lubanski scalar in the Polygon Approach to 2+1-Dimensional Gravity

    Full text link
    In this paper we derive an expression for the conserved Pauli-Lubanski scalar in 't Hooft's polygon approach to 2+1-dimensional gravity coupled to point particles. We find that it is represented by an extra spatial shift Δ\Delta in addition to the usual identification rule (being a rotation over the cut). For two particles this invariant is expressed in terms of 't Hooft's phase-space variables and we check its classical limit.Comment: Some errors are corrected and a new introduction and discussion are added. 6 pages Latex, 4 eps-figure

    The mathematical basis for deterministic quantum mechanics

    Full text link
    If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes is further elucidated, as it follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.Comment: 17 pages, 3 figures. Minor corrections, comments and explanations adde

    Computation of the Vortex Free Energy in SU(2) Gauge Theory

    Get PDF
    We present the first measurement of the vortex free-energy order parameter at weak coupling for SU(2) in simulations employing multihistogram methods. The result shows that the excitation probability for a sufficiently thick vortex in the vacuum tends to unity. This is rigorously known to provide a necessary and sufficient condition for maintaining confinement at weak coupling in SU(N) gauge theories.Comment: 7 pages, LaTeX with 3 eps figures, minor changes, replacement of Fig.

    Supersolids in the Bose-Hubbard Hamiltonian

    Get PDF
    We use a combination of numeric and analytic techniques to determine the groun d state phase diagram of the Bose--Hubbard Hamiltonian with longer range repulsi ve interactions. At half filling one finds superfluidity and an insulating solid phase. Depending on the relative sizes of near--neighbor and next near--neighbor interactions, this solid either follows a checkerboard or a striped pattern. In neither case is there a coexistence with superfluidity. However upon doping ``supersolid'' phases appear with simultaneous diagonal and off--diagonal long range order.Comment: 11 pages, Revtex 3.0, 6 figures (upon request
    • …
    corecore